

多重極限環境下におけるエキゾチック超伝導体の ギャップ対称性の検出

東京工業大学 井澤 公一

非従来型超伝導とギャップ構造
 ギャップ対称性の検出法
 比熱測定法
 圧力測定法
 測定例
 まとめ

非従来型超伝導(異方的超伝導体)の例

高温超伝導

High-T_c cuprates
鉄ヒ素系超伝導

反強磁性と共存

- CeRhIn5
- UPd₂Al₃
- CePt₃Si
- Celn₃

強磁性と共存

- UGe₂
- URhGe
- UCoGe
- Ulr

隠れた秩序と共存

• URu₂Si₂

スピン三重項

- Sr₂RuO₄
- Sr₂Ca₁₂Cu₂₄O₄₁
- (TMTSF)₂PF₆
- UBe₁₃
- UPt₃
- UGe₂
- URhGe
- UNi₂Al₃
- PrOs₄Sb₁₂

多重超伝導相

- CeCu₂Si₂
- UPt₃
- PrOs₄Sb₁₂
- CeCoIn₅ (FFLO)
- к-(BEDT-TTF)₂Cu(NCS)₂
 (FFLO?)

空間反転対称性の破れ

- L_2Pt_3B
- CePt₃Si
- CeRhSi3
- CelrSi3
- Ulr

時間反転対称性の破れ

- Sr₂RuO₄
- PrOs₄Sb₁₂
- UPt₃ (?)

非従来型超伝導の特徴

その多くで超伝導対関数にノードが存在

 $\begin{cases} q = (0,0) & \cos q_x + \cos q_y = 2 \\ q = (\pi,\pi) & \cos q_x + \cos q_y = -2 \end{cases}$ 異なる符号のクーパー対がエネルギー的 に安定 どのようにしてノード方向(ギャップ対称性)を調べるのか?

異方的超伝導体では・・

クーパー対の壊れやすさが 磁場の方向により異なる.

準粒子状態密度の磁場方向依存性(角度依存性)

ギャップ構造を反映した角度依存性

K.Maki, Physica C **341**, 1647 (2000). I.Vekhter *et al.*, Phys. Rev. B **59**, 9023 (1999). F.Yu *et al.*, Phys. Rev. Lett. **74**, 5136 (1995). どのようにしてノード方向(ギャップ対称性)を調べるのか?

準粒子スペクトルのドップラーシフト $E \rightarrow E - p \cdot v_s$

G.E.Volovik, JETP Lett. 58, 469 (1993).

状態密度の増加

 $d_{x^2-y^2}$ -wave

I. Vekhter et al., Phys. Rev. B 59, R9023 (1999).

どのようにしてノード方向(ギャップ対称性)を調べるのか?

→ 準粒子状態密度の磁場方向依存性

比熱

$$C_s = 2N(0) \int_{-\infty}^{\infty} d\varepsilon \int \frac{d\Omega}{4\pi} E_k \frac{\partial}{\partial T} \frac{1}{e^{E_k/T} + 1}$$

実験:交流法

$$C = \frac{P_0}{T_{\rm ac}\omega}\sin(\phi - \phi_0)$$

熱伝導率

$$\frac{\kappa_{xx}}{T} = \frac{v_f^2}{4\pi} \int_0^\infty \frac{d\omega}{T} \left(\frac{\omega}{T}\right)^2 \cosh^{-2}\left(\frac{\omega}{2T}\right) \times \int_0^{2\pi} d\phi \cos^2 \phi N(\omega,\phi) \tau(\omega,\phi)$$

実験:定常法

$$\kappa = \frac{L}{S} \frac{Q}{\Delta T}$$

UPd₂Al₃

UPt₃

e

非従来型超伝導体の特徴

圧力誘起超伝導体

- ・常圧での超伝導体よりも**数が多く** その**基底状態は多彩**
- ・圧力により電子状態が制御可能
- ・超伝導状態の詳細はほとんど理解 されていない

- 例・CeRhIn₅
 - Celn₃
 - CeCu₂Ge₂
 - \cdot CePd₂Si₂
 - CeNi₂Ge₂
 - ZrTe₃

- UGe₂
- Ulr
- $\cdot Sr_2Ca_{12}Cu_{24}O_{41}$
- (TMTSF)₂PF₆
- β-(BEDT-TTF)₂ICl₂

2

交流法による比熱測定

AC heating power

交流熱P(t)

熱応答Tac

圧力測定法:ルビー蛍光法

CelrSi₃ 空間反転対称性の破れた結晶構造

[001] (c-axis)

正方晶BaNiSn3型 (I4mm)

Ce

Si

Sit

Spin-Orbit interaction

重い電子状態 $\gamma = 125 \text{ mJ/K}^2 \text{mol}$

[100] (a-axis)

反強磁性秩序

 $T_{\rm N} = 5 \text{ K} @0 \text{ GPa}, Q = (\pm 0.265, 0, 0.43)$

[110]

N.Aso, et. al., J. Phys. Soc. Jpn. 80, 095004 (2011).

圧力誘起超伝導(I.8 < P < 3.5 GPa)

T_c~I.6 K (最大) @2.63 GPa

R. Settai, et. al., J. Phys. Soc. Jpn. 80, 094703 (2011).

空間反転対称性の破れた超伝導

Spin-singletとSpin-tripletの混ざった状態

$$\Delta(k) = \begin{pmatrix} -d_x(k) + id_y(k) & d_z(k) + \Psi(k) \\ d_z(k) - \Psi(k) & d_x(k) + id_y(k) \end{pmatrix}$$

d(k) : spin-triplet $\Psi(k)$: spin-singlet