

ピクセル半導体検出器の開発

陣内 修

東工大理学院

先端物理計測開発室キックオフワークショップ

2016. 12. 22

2016/12/22 AILAP workshop 陣内修

LHC Run-1 (8TeV) 素粒子標準模型の成功

標準模型=「17の素粒子」+「場の理論」 ゲージカに基づく量子場の計算が 自然を完璧に表現

2016/12/22 AILAP workshop 陣内修

- BSMの2大根拠
 - 階層性問題(ヒッグス質量問題)
 - 暗黒物質候補

超対称性粒子探索の例

■ 新物理発見の鍵を握るのは

- レプトン(電子、ミューオン)
- ジェット(特にb–クォーク起源)
- 消失エネルギー

荷電粒子の飛跡検出 がとても重要

LHC実験 高輝度化計画

2016/12/22 AILAP workshop 陣内修

- HL(高輝度)-LHCでは
 - エネルギーは据え置き
 - 瞬間luminosity:現設計の 5-7倍
 - 積算luminosity:2023年までの10倍
- データを増やすだけでOK?
 - 実効的にエネルギースケールの増加

大輝度化の代償→検出器への厳しい要求

- 現行の飛跡検出器は2023年まで(放射線損傷、読み出し)
- 半径1m内の飛跡検出器を一新する

- 受容放射線量:現行検出器の約10倍
 - 放射線耐性 5x10¹⁵ [n_{eq}/cm²]で動作
- pile-up ~200同時衝突
 - ピクセルの微細化 →50x50 µm²

この要求を満たすPIXEL検出器の開発 アトラス内規格 & 国際競争

n=200のシミュレーション

2016/12/22

陣内修

AILAP workshop

ピクセル検出器

2016/12/22 **AILAP workshop** 随内修

3Dトラッキング

FEチップに

ピクセル状に細分化された検出器 どうやって信号を読み出すのか →センサー部は一体、 n-p接合 & 読み出し電極がピクセル状 →読み出しASIC(FEチップ)と直接接合

Pixelセンサーの性能

10

■ 評価基準

■ 安定した製作歩留まり・動作

■ 検出効率

- 入射した荷電粒子に対しヒット信号を出すか
- エネルギー損失は必須→電荷を正しく収集できるか
- センサー全体で99%以上が目安
- 電荷量測定
 - センサー→ASIC(デジタル化)→読み出し
 - 電荷量情報はTOTという数値化(4bit)

放射線損傷後にこれらを保障する必要

Time over Threshold

Vthを越えた時間(25 ns単位)

11

アトラス日本シリコングループとの共同研究で進めている

陽子線照射試験

- 東北大CYRICにて、70MeVの陽子線を用いた照射試験
 - 照射量目安: 3x10¹⁵ [1MeVn_{eq}/cm²]
 HL-LHC Pixel 3層目 10年間の放射線量の2倍
 - beam auto scan:満遍なく照射
 - 照射量は下流のドシメトリで測定

Irradiation box @ CYRIC

粒子ビーム試験

- 目的:
 - 開発中の検出器のピクセルサイズより 1/10程度の分解能で、検出効率 などの構造依存性を検証する

- 場所:主にCERN SPS
 - 120GeV 荷電π粒子
 - 高位置分解能(18x18µm²)の ピクセル検出器でトラッキング (σ=3~5µm)

荷雷π

13

2016/12/22

随内修

AILAP workshop

14

(2016年6月に行われたビーム試験の解析結果) ピクセル内のヒット位置ごとの検出効率

様々な試行錯誤の末(割愛)、

一様に高効率なセンサーの製造方法を確立
 →ピクセルの境界部で若干の検出効率低下があるが支障なし

2016/12/22 AILAP workshop 陣内修

- LHCでは飛跡検出器が重要な役割を担う
- HL-LHC用のピクセル検出器開発を進めている
- より最終版(実機)に近い型のセンサーで現在試験を 進めている。
 - 40 mm x 40 mm (ASIC 4つ搭載)
 - 50x50 μm² ピクセルサイズ
 - 専用高速読み出しASICへの対応
- 来年度末の「技術選択」で残ることが目標

